THE ${\mathcal F}$-LANDSCAPE: DYNAMICALLY DETERMINING THE MULTIVERSE
نویسندگان
چکیده
منابع مشابه
On Property (A) and the socle of the $f$-ring $Frm(mathcal{P}(mathbb R), L)$
For a frame $L$, consider the $f$-ring $ mathcal{F}_{mathcal P}L=Frm(mathcal{P}(mathbb R), L)$. In this paper, first we show that each minimal ideal of $ mathcal{F}_{mathcal P}L$ is a principal ideal generated by $f_a$, where $a$ is an atom of $L$. Then we show that if $L$ is an $mathcal{F}_{mathcal P}$-completely regular frame, then the socle of $ mathcal{F}_{mathcal P}L$ consists of those $f$...
متن کاملOn socle and Property (A) of the f-ring $Frm(mathcal{P}(mathbb R), L)$
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in$L$. $f$-ring $mathcal{R}(L_{ tau})$ is equal to the set $${fin Frm(mathcal{P}(mathbb R), L): f(mathfrak{O}(mathbb R))subseteq tau} .$$ In this paper, for every complemented element $ain L$ with $a, a'...
متن کاملon the semi cover-avoiding property and $mathcal{f}$-supplementation
in this paper, we investigate the influence of some subgroups of sylow subgroups with semi cover-avoiding property and $mathcal{f}$-supplementation on the structure of finite groups and generalize a series of known results.
متن کاملPolylogarithmic Approximation Algorithms for Weighted-$\mathcal{F}$-Deletion Problems
Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined as follows: given an n-vertex undirected graph G and a weight function w : V (G)→ R, find a minimum weight subset S ⊆ V (G) such that G− S belongs to F . This is known as Weighted F Vertex Deletion problem. In this paper we devise a recursive scheme to obtain O(logO(1) n)-approximation algorithms for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics A
سال: 2012
ISSN: 0217-751X,1793-656X
DOI: 10.1142/s0217751x12501217